

SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY : PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: OPTIMIZATION TECHNIQUES (23HS0852)

Branches: Common to CAI,CSM,CSIT branches of B.Tech

Year & Sem: II-B.Tech & II-Sem

Regulation: R23

<u>UNIT –I</u> INTRODUCTION

1	a) Define Neture and Scope of OP		[2] /[]
1	a) Define Nature and Scope of OR	[L1] [CO1]	[2M]
	b) Define Standard form of LPP	[L1] [CO1]	[2M]
	c) Define Optimization	[L1] [CO1]	[2M]
	d) Define basic Feasible Solution	[L1] [CO1]	[2M]
	e) Define Slack and Surplus Variable	[L1] [CO1]	[2M]
2	a) Formulation of Linear Programing Problem	[L6] [CO1]	[5M]
	b) Limitations of Linear Programing Problem	[L2] [CO1]	[5M]
3	Solve the following Linear Programming Problem using Graphical method. Minimize $Z = 2x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 6$ $7x_1 + x_2 \ge 14$ x_1 and $x_2 \ge 0$	[L3] [CO1]	[10M]
4	Solve the following Linear Programming Problem using Graphical method. Maximixe $Z = 6x_1 + 8x_2$ Subject to $5x_1 + 10x_2 \le 60$ $4x_1 + 4x_2 \le 40$ x_1 and $x_2 \ge 0$	[L3] [CO1]	[10M]
5	(a) Explain the procedure for Solving the LPP using Graphical method.	[L2] [CO1]	[5M]
	(b) Explain the procedure for Solving the LPP using simplex method.	[L2] [CO1]	[5M]
6	Solve the following Linear Programming Problem using Simplex method. Maximize $Z = 10x_1 + 15x_2 + 20x_3$ Subject to $2x_1 + 4x_2 + 6x_3 \le 24$ $3x_1 + 9x_2 + 6x_3 \le 30$ x_1, x_2 and $x_3 \ge 0$	[L3] [CO1]	[10M]
7	Solve the following Linear Programming Problem using Simplex method. Minimize $Z = 8x_1 - 2x_2$ Subject to $-4x_1 + 2x_2 \le 1$ $5x_1 - 4x_2 \le 3$ x_1 and $x_2 \ge 0$	[L3] [CO1]	[10M]

8	Solve the following Linear Programming Problem using Big-M method. Minimize $Z = 2x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 6$ $7x_1 + x_2 \ge 14$ $x_1 and x_2 \ge 0$	[L3] [CO1]	[10M]
9	Solve the following Linear Programming Problem using Big-M method. Maximize $Z = 6x_1 + 4x_2$ Subject to $2x_1 + 3x_2 \le 30$ $3x_1 + 2x_2 \le 24$ $x_1 + x_2 \ge 3$ $x_1 and x_2 \ge 0$	[L3] [CO1]	[10M]
10	(a) Explain the procedure for Solving the LPP using Big-M method.	[L2] [CO1]	[5M]
	(b) Explain the procedure for Solving the LPP using Two phase method.	[L2] [CO1]	[5M]
11	Solve the following Linear Programming Problem using Two Phase method. Min $Z = 12x_1 + 18x_2 + 15x_3$ Subject to $4x_1 + 8x_2 + 6x_3 \ge 64$ $3x_1 + 6x_2 + 12x_3 \ge 96$ x_1, x_2 and $x_3 \ge 0$	[L3] [CO1]	[10M]

<u>UNIT –II</u> TRANSPORTATION PROBLEM

1	(a) Write the	mathemati	cal form	of Trans	portatio	n Prob	olem.	[L1] [CO2]	[2M]
	(b) Define Ba	[L1] [CO2]	[2M]						
	(c) What is an	n Degenera	cy Trans	sportatio	n Proble	m.		[L1] [CO2]	[2M]
	(d) State the c	blem [L2] [CO2]	[2M]						
	(e) What is m	[L1] [CO2]	[2M]						
2	(a) Explain th	[L2] [CO2]	[5M]						
	(b) Explain th	[L2] [CO2]	[5M]						
3	(a) Explain th	e procedui	e for Vo	gel's Ap	proxima	tion N	Iethod (VAM)	[L2] [CO2]	[5M]
	(b) Explain th	e procedu	re Unbal	anced an	d Maxin	nizatio	on Transportation Pro	blem [L2] [CO2]	[5M]
4	Explain the p	rocedure fo	or Deger	eracy Ti	ansporta	tion P	roblem	[L2] [CO2]	[10M]
5	(a) Obtain the	e initial bas	ic feasib	le soluti	on by usi	ing NV	WCR to the following	[L5] [CO2]	[5M]
	Transportatio	n Problem				_	-		
			D_1	<i>D</i> ₂	D_3		ilability		
		01	2	7	4	5			
		02	3	3	1	8			
		03	5	4	7	7			
		0_4	1	6	2	14			
		Require	7	9	18				
	(b) Obtain the	initial bas	sic feasil	ole soluti	on by us	ing LC	CM to the following	[L5] [CO2]	[5M]
	Transportatio			ie soluti	on by us	ing Le	end to the following		
			D_1	D_2	D_3	D_4	Availability		
		01	6	8	8	8	30		
		02	5	9	7	9	40		
		03	8	7	13	6	50		
		Require	35	28	32	25			
		1	55	20	52	25			
		1	55	20	52	25			
6	(a) Obtain the						AM to the following		[5M]
6		e initial bas					AM to the following	[L5] [CO2]	[5M]
6	(a) Obtain the Transportatio	e initial bas					AM to the following	[L5] [CO2]	[5M]
6		e initial bas	ic feasib	le soluti	on by usi	ing VA	_	[L5] [CO2]	[5M]
6		e initial bas n Problem					_	[L5] [CO2]	[5M]
6		e initial bas n Problem	ic feasib D_1	le soluti D_2	on by usi D_3	ing VA D_4	Supply	[L5] [CO2]	[5M]
6		e initial bas n Problem $0_1 \\ 0_2$	ic feasib D_1	le soluti D_2 1	on by usi D_3 7	ing VA	Supply 300	[L5] [CO2]	[5M]
6		e initial bas n Problem	ic feasib	le soluti D_2 1 6	on by usi D_3 7 5	ing VA D_4 4 9	Supply 300 400 500	[L5] [CO2]	[5M]
6		e initial bas n Problem 0_1 0_2 0_3	ic feasib	le soluti $ \begin{array}{c} D_2\\ 1\\ 6\\ 3\end{array} $	on by usi $ \begin{array}{c} D_3 \\ 7 \\ 5 \\ 3 \end{array} $	ing VA	Supply 300 400 500	[L5] [CO2]	[5M]
6	Transportatio	e initial bas n Problem 0_1 0_2 0_3 Demand	ic feasib	le soluti $ \begin{array}{c} D_2 \\ 1 \\ 6 \\ 3 \\ 350 \end{array} $	on by usi $ D_3 $ 7 5 3 400	ing VA	Supply 300 400 500		[5M]
6	Transportatio	e initial bas n Problem 0_1 0_2 0_3 Demand	ic feasib	le soluti $ \begin{array}{c} D_2 \\ 1 \\ 6 \\ 3 \\ 350 \end{array} $	on by usi $ \begin{array}{c} D_{3} \\ 7 \\ 5 \\ 3 \\ 400 \\ \hline to the for $	ing VA $ \begin{array}{c} D_4 \\ 4 \\ 9 \\ 2 \\ 200 \\ \hline Dllowin \end{array} $	Supply 300 400 500		
6	Transportatio	e initial bas n Problem 0_1 0_2 0_3 Demand	ic feasib D_1 3 2 8 250 feasible	le soluti D_2 1 6 3 350 solution	on by usi $ \begin{array}{c} D_3 \\ 7 \\ 5 \\ 3 \\ 400 \\ \hline 1 \text{ to the fo} \\ D_3 \\ \end{array} $	ing VA $ \begin{array}{c} D_4 \\ 4 \\ 9 \\ 2 \\ 200 \\ \hline D_4 \\ S \\ \end{array} $	Supply 300 400 500 ng Transportation pro		
6	Transportatio	e initial bas n Problem $ \begin{array}{c} 0_1\\ 0_2\\ 0_3\\ \end{array} $ Demand mum basic	ic feasible D_1 3 2 8 250 feasible D_1	le soluti D_2 1 6 3 350 solution D_2	on by usi $ \begin{array}{c} D_3 \\ 7 \\ 5 \\ 3 \\ 400 \\ \hline to the fo \\ D_3 \\ 1 \\ \hline \end{array} $	ing VA $ \begin{array}{c} D_4 \\ 4 \\ 9 \\ 2 \\ 200 \\ \hline D_4 \\ 5 \\ 1 \end{array} $	Supply 300 400 500 I Ing Transportation pro Supply		
6	Transportatio	e initial bas n Problem $ \begin{array}{c} 0_1\\ 0_2\\ 0_3\\ \end{array} $ Demand $ \begin{array}{c} 0_1\\ 0_2\\ 0_3\\ \end{array} $	ic feasibility D_1 3 2 8 250 feasible D_1 6	le soluti D_2 1 6 3 350 solution D_2 4	on by usi $ \begin{array}{c} D_3 \\ 7 \\ 5 \\ 3 \\ 400 \\ \hline to the fo \\ D_3 \\ 1 \\ 2 \\ \end{array} $	ing VA $ \begin{array}{c} D_4 \\ 4 \\ 9 \\ 2 \\ 200 \\ \hline D_4 \\ 5 \\ 1 \end{array} $	Supply 300 400 500 I Ing Transportation pro Supply 14 16		

7	Find the i	ntial ba	sic feas	sible solu	ution us	ing NW	/CR,LCN	M,VAM and compare total	[L1] [CO2]	[10M]
	costs	M1	MO	M2	MA	N/5	Gumpler			
	P1	M1 10	M2 2	M3 16	M4 14	M5 10	Supply 300			
	P1 P2	6	18	10	14	16	500	-		
	P3	8	4	14	12	10	825	-		
	P4	14	22	20	8	18	375	-		
	Demand	-	400	250	150	400		_		
				1	1		J			
8	Solve the	followi	ing Tra	nsportati	on Prol	olem			[L3] [CO2]	[10M]
				D_1	D_2	D_3	D_4	Availabilites		
			01	8	10	7	6	50		
			02	12	9	4	7	40		
			03	9	11	10	8	30		
		R	equire	25	32	40	23			
0		<i>.</i> 1 <i>.</i>	1	1.0	1	6.4	•	. 11		573 43
9	(a) write	the mat	hemati	cal form	ulation	of the a	assignme	nt problem	[L1] [CO2]	[5M]
	(b) Evola	in abou	t Hugar	ian algo	rithm fo	or solvi	na an acc	signment problem.	[L2] [CO2]	[5M]
			t Hugai	ian aigo	111111111	50171	ing an ass	signment problem.		
10	(a) There	are fou	r iobs A	A.B.C an	d D the	se are l	Performe	d on 4 machines1,2,3,4. One	[L5] [CO2]	[5M]
	• •							on machine is given below in	[][]	[•]
	the follow						5	C		
		Ι	II	Ι	II	IV				
	А	15	14	1	2	16				
	В	23	22		5	24				
	С	31	34		2	33				
	D	21	32	4	4	53				
	(b) A co	mpany	has fou	r salesm	an targ	eted at	four citie	s.the profit per day in rupees	[L5] [CO2]	[5M]
								ssignment of salesman to	[][]	[]
	various ci							C		
				SALES						
			1	2	3	4				
		А	16	10	14		1			
	CITIES	В	14	11	15		5			
		С	15	15	13		2			
		D	13	12	14	1	5			
44	0.1.4	C 11	•	• .	1 1					F103 #3
11	Solve the following assignment problem								[L3] [CO2]	[10M]
			1	MACHI		4				
		٨	1	2	3	4	,			
		A B	18	24	28	32				
		C B	8	13		19 22				
		L	10	15	19	22				

UNIT –III SEQUENCING

1	(a)Define sequ	lencing.									[L1] [CO3]	[2M]
-	(b)Define Idle		machi	ne.							[L1] [CO3]	[2M]
	(c)Define total										[L1] [CO4]	[2M]
	(d)Define prod	cessing tir	ne.								[L1] [CO4]	[2M]
	(e) Write assur		[L1] [CO4]	[2M]								
2	Explain the join	hnsons alg	gorithm	for n job	os and two	o machi	nes.				[L2] [CO3]	[10M]
3	We have five j	[L5] [CO3]	[10M]									
	AB.Processing	g the time	s(in hou			1						
	JOBS MACHINE A	1		2	3		4			5		
		5		1	9		3		1	0		
	MACHINE B	2		6	7	1	8		4	4		
4	Six jobs go fir	st over m	achine]	and the	n over the	e machi	ne II. The	e follo	wing	table	[L5] [CO3]	[10M]
	gives the mach	nine times	s in hou	rs for six	jobs and	the two	machine	s.				
	JOBS	1		2	3	4		5		6		
	Time on MACHINE I	5		9	4	7		8		6		
	Time on MACHINE II	7		4	8	3		9		5		
	MACHINE II											
5	Explain the jo	hnsons al	gorithm	for n joł	os and thr	ee mach	ines.				[L2] [CO3]	[10M]
6	Find the optim	um seque	ence of	the jobs (on three n	nachine	ABan	l C in	the c	rder	[L1] [CO4]	[10M]
U	ABC which m	-										
	and C the Proc							n maci	mica	5 Л,Д		
					cessing ti	imes (in	hours)					
	Jobs	Mach	ine A	N	Iachine B		N	Machir	ne C			
	1		3	10.	3		1	8				
			3		3 4			7				
	3		, 7		5			6				
	4		2		2			9				
	5		5		1			10				
	6		ĺ		6			9				
7	Find the seque	ence for th	ne follov	wing eigh	nt jobs tha	at will m	ninimize	the tota	al ela	apsed	[L1] [CO4]	[10M]
	time for the co	ompletion	of all jo	obs.each	job is pro	cessed i	in the san	ne orde	er C			
	Jobs machines	1	2	3	4	5	6	,	7	8		
	A	4	6	7	4	5	3	(6	2		
	В	8	10	7	8	11	8		9	13		
	С	5	6	2	3	4	9		.5	11		
8	(a) Explain the	iohnoon	مامم	hm for r	icha thra	ugh m -	nachinas				[L 2] [CO4]	[5]/[]
0	(a) Explain the (b)Explain the	5	0		5	0					[L2] [CO4] [L2] [CO4]	[5M] [5M]
9	Four jobs are t	-	-		-	-			inim	um	[L2] [CO4]	[10M]
	elapsed time if											[TOTAT]
L	1		-	-							1	1

	machine									
	MACHINE				JOI	BS]		
		1		2	, ,	3	4			
	А	7	1	6)	5	8			
	В	5	i	6)	4	33			
	С	2		4		5	3			
	D	3		5		6	2			
	E	9)	10)	8	6			
10	Essentistication	2 1 4	1-				<u>6</u>			[10]
10	E in the order							A,B,C,D and	[L5] [CO4]	[10M]
	permitted also						le ii iio passiii	ig 01 j008 is		
	Machine A			D	E					
	jobs	I D	C	D	Ľ					
	v v	4 10	4	6	18					
		2 12		10	20					
		$\frac{2}{0}$ 8	10	10	16					
	-				-					
	4 1	6 6	6	4	12					
						J				
11	Using Graphi	ical meth	od.Dete	ermine	the op	timal sequenc	e needed to p	rocess job 1		
	and 2 on five									
	be done first.									
		quence :					*			
		ime :								
		equence :								
	Т	'ime :	5 4	3 2	2 6					

<u>UNIT –IV</u> GAME THEORY

1a) Define GAME theory[L1] [CO5]b) Define Saddle point[L1] [CO5]c) Define Payoff matrix[L1] [CO5]d) Define Two person zero sum game[L2] [CO5]e) Define mixed strategy & pure strategy[L1] [CO5]2a) Determine the optimal strategy for company A and company B[L1] [CO5]Company B1 2 31 [20 15 22]Company A 2 35 45 403 [18 20 25][L1] [20 25]	[2M] [2M] [2M] [2M] [2M]
c) Define Payoff matrix[L1] [CO5]d) Define Two person zero sum game[L2] [CO5]e) Define mixed strategy & pure strategy[L1] [CO5]2a) Determine the optimal strategy for company A and company B[L1] [CO5]Company B123	[2M] [2M] [2M]
d) Define Two person zero sum game[L2] [CO5]e) Define mixed strategy & pure strategy[L1] [CO5]2a) Determine the optimal strategy for company A and company B[L1] [CO5]Company B123	[2M] [2M]
e) Define mixed strategy & pure strategy [L1] [CO5] 2 a) Determine the optimal strategy for company A and company B [L1] [CO5] Company B 1 2 3	[2M]
2 a) Determine the optimal strategy for company A and company B [L1] [CO5] Company B 1 2 3	
Company B 1 2 3	[5M]
3 [18 20 25]	
b) Algorithm to determine mixed strategy for 2×2 pay off matrix player B 1 2 $playerA \begin{bmatrix} 1 \\ a & b \\ c & d \end{bmatrix}$ [L1] [CO5]	[5M]
3 (a)Consider the given payoff matrix with respect to player A and solve it optimally Player B $1 \ 2$ $player A \ 1 \ 2 \ 6 \ 9 \ 8 \ 4$ [L5] [CO5]	[5M]
(b) Explain about dominance properties Row and column [L1] [CO5]	[5M]
 Player A and B play a game in which each player has three coins (20p,25p and 50p) [L5] [CO5] each of them selects a coin without the knowledge of the other person.if the sum of the values of the coin is an even number, A wins B'scoin.if the sum of an odd number B wins A's coin (a)Develop a payoff matrix with respect to player A (b)Find the optimal strategies for the players 	[10M]
5 Consider the 4×4 game played by palyers A and B and slove it optimally [L5] [CO5] Player B 1 2 3 4 1 2 3 4 2 -1 1 12 Player A $\begin{bmatrix} 6 & 2 & 4 & 8 \\ 2 & -1 & 1 & 12 \\ 2 & 3 & 3 & 9 \\ 4 & 5 & 2 & 6 & 10 \end{bmatrix}$ [L5] [CO5] [L5]	[10M]
$ \begin{array}{ c c c c c c c c } \hline 6 & Solve the following 3×5 game using dominance property \\ Player B \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 10 & 7 & 2 \\ player A & 2 & 3 & 6 & 6 & 4 \\ 3 & 4 & 4 & 8 & 12 & 1 \end{array} $	[10M]
7(a)Algorithm for slove the 2×n game using graphical method[L3] [CO5]	[5M]
(b) Algorithm for slove the m×2 game using graphical method [L3] [CO5]	[5M]

8	Consider the payoff matrix of player A and slove it optimally using graphical method Player B 1 - 2 - 3 - 4 - 5	[L3] [CO5]	[10M]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
9	Consider the payoff matrix of player A and slove it optimally using graphical method Player B 1 2 1 1 2 1 1 3 2 3 1 3 1 5 -1 4 6 -6	[L1] [CO5]	[10M]
10	Represents the payoff matrix with respect to player A solve it optimally using LPP Player B $1 \ 2 \ 3$ Player A 2 $3 \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ 3 \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$	[L5] [CO5]	[10 M]
11	Consider a game in which the payoff matrix of the player A.slove this game optimally using linear programming Player B $1 \ 2 \ 3$ Player A 2 $\begin{bmatrix} 6 & 8 & 2 \\ 8 & 2 & 10 \\ 3 & 4 & 10 & 12 \end{bmatrix}$	[L5] [CO5]	[10M]

<u>UNIT –V</u> <u>PROJECT MANAGEMENT</u>

1	(a)Define Total float.	[L1] [CO6]	[2M]
	(b)Define Free float.	[L1] [CO6]	[2M]
	(c)Define Optimistic time.	[L1] [CO6]	[2M]
	(d)Define Most likely time.	[L2] [CO6]	[2M]
	(e)Define Pessimistic time.	[L1] [CO6]	[2M]
2	(a)Construct a Network for the project whose activities and precedence relationship	[L1] [CO6]	[5M]
	are as given below		
	Activites A B C D E F G H I		
	predecessor - A A - D B,C,D F D G,H		
	(b) Construct a network for each of the project whose activities and their predence	[L1] [CO6]	[5M]
	Relationship are given below		
	ActivityABCDEFGHIJKpredecessorABBCDEH,IF,G		
	predecessor A B B C D E H,I F,G		
3	Consider the following data for the activities of a project	[L5] [CO6]	[10M]
•		[20][000]	[=•=-]
	Activity A B C D E F G H I J		
	Immediate predecessor A,B A,B B C D F,G F,G E,H		
	Duration (Weeks) 4 3 2 5 6 4 3 7 4 2		
	Draw the network and find the critical path and also find various floats.		
4	Consider the following data for the activities of a project	[L1] [CO6]	[10M]
	Activity A B C D E F		
	Immediate predecessor - A A B,C E		
	Time 2 3 4 6 2 8		
	Draw the Network and find the critical path and also find various floats.		
5	Draw the network diagram and identify critical path for the following data.	[L5] [CO6]	[10M]
	Activity 1-2 1-3 1-4 2-5 3-6 3-7 4-7 5-8 6-8 7-9 8-9 9-10		
	Time 2 2 2 4 5 8 4 2 4 5 3 4		
	(weeks)		
6	Draw the network diagram and identify critical path for the following data.	[L1] [CO6]	[10M]
	Activity 1-2 1-3 1-4 2-5 3-4 3-7 4-6 5-7 6-7		
	Time (Days) 20 23 8 19 16 24 18 18 10		
7	The following table shows the jobs of a project with their duration in days draw the	[L3] [CO6]	[10M]
,	the network and determine the critical path. Also calculate all the floats		
	Activity 1-2 1-3 1-4 2-5 3-7 4-6 5-7 5-8 6-7 6-9 7-10 8- 9- 10- 11-		
	Days 10 8 9 8 16 7 7 7 8 5 12 10 15 8 5		

8	A Pro	ject con	sists the	following a		[L5] [CO6]	[10M]					
		Activit		imistic time		ikely time	Pessimisti					
		1-2		1		7	13					
		1-6		2		5	14					
		2-3		2		14	26					
		2-4		2		5	8					
		3-5		7		10		19				
		4-5		5	5		17					
		6-7		5		8	29					
		5-8		3		3	9					
		7-8		8		17	32					
	Draw	the proj	ject netv	work and fir	d probab	oility of the	project con	npleting	g in 4	40 days		
9	A pro	ject con	sists the	e following				times			[L1] [CO6]	[10M]
		tivity	1-2	2-3	2-4	3-4	3-5	4-5		5-6		
		0	1	1	2	1	2	2		3		
		М	1	4	2	1	5	5		6		
		Р	7	7	8	1	14	8		15		
	Draw	PERT of	liagram	and find the	e Critical	path						
10	Consi	dan tha	f a 11 a version			- the details	of a musica	4				[10]
10	Acti		predec	ng table sum				il I			[L5] [CO6]	[10M]
	Acu	vity	predect		Duration(wee		P					
		A	-		5	6	7					
		B	-		1	3	5					
		C	_		1	4	7					
		D	A		1	2	3					
		E	B		1	2	9					
		F	Ċ		1	5	9					
		G	С		2	2	8					
		Н	E,I	F	4	4	10					
		Ι	D		2	5	8					
		J	H,C	G	2	2	8					
	(i)con	struct th	ne proje	ct network								
	. ,		-	th and expe	1 0	1						
				bility of con		the project	on or before	e 22 wee	eks			
11	(a) Ex	xplain th	e proce	dure for CP	М						[L5] [CO6]	[5M]
	$(\mathbf{b}) \mathbf{E}_{\mathbf{x}}$	noin th	n proced	Jura for DEL	от							[5M]
		span in	e procec	lure for PEF	1						[L5] [CO6]	[5M]
L	ı										1	1